
SMMDecoy: Detecting GPU Keyloggers using
Security by Deception Techniques

Ijlal Loutfi
Informatics Department, University of Oslo, Gaustadalleen 23B, Oslo, Norway

ijlall@uio.no

Keywords: Keylogger, System Management Mode, Deception, Detection.

Abstract: Human computer interaction is a fundamental part of the modern computing experience. Everyday, millions
of users rely on keyboards as their primary input interface, and use them to enter security sensitive information
such authentication credentials. These can be passwords, but also multi-authentication factors received from
other devices, such as One Time Passwords and SMS’s. Therefore, the security of the keyboard interface is
critical. Unfortunately, both PS/2 and USB keyboards have open buffers which are vulnerable to sniffing by
keyloggers. This paper focuses on the detection of the stealthiest variance of keyloggers, which is deployed
within IO devices firmware, such as GPUs. We propose to use principles of security by deception: We inject
decoy credentials into the open keyboard buffers, and give GPU keyloggers the opportunity to sniff them.
These decoy credentials are then sent to a remote server that can raise an alarm anytime an attacker uses them.
We assume a strong adversary that can infect both the GPU and the kernel. Therefore, we propose to deploy
the solution within System Management Mode, and leverage Intel Software Guard Extensions for network
communication. Both SMM and SGX are hardware protected against the OS and DMA, and provide thus
strong security guarantees to our solution, which we name SMMDecoy.

1 INTRODUCTION

Despite recent advances in user authentication, the
most commonly deployed mechanism in the internet
today is still passwords. Everyday, millions of users
rely on their username/password credentials to gain
access to security-sensitive digital services. How-
ever, password-based authentication is routinely com-
promised. The main attack vectors can be classified
in three categories: 1) the server side where pass-
word files are stored, 2) users’ bad cognitive habits
of choosing weak and redundant passwords or falling
prey to social engineering 3) and finally, vulnera-
bilities within end-user devices where passwords are
stored and operated on (Herley, 2009) (Florencio and
Herley, 2007).
As a matter of fact, over the past decade, we have
witnessed many password disclosures of high pro-
file companies such as Sony, Yahoo, and LinkedIn.
Analysis of these breaches revealed that many of
these online service providers implement bad security
practices, such as using unsalted hashes, and weak
deprecated hashing algorithms. The silver lining of
this slew of high profile password compromises, is
the increased awareness about the issues, which has

prompted many companies to review and harden their
password servers’ security. Consequently, this has
been increasing the cost of attack of database servers,
and thus, turning the attention of attackers to endpoint
devices as a more attractive attack vector (Thomas
et al., 2017) (Holz et al., 2009).
Furthermore, the adoption of multi-factor authentica-
tion by many online service providers has further mo-
tivated attackers to focus on endpoints. For example,
many banks distribute One Time Password generators
(OTP) to their users, while others rely on out-of-band
methods such as SMS to send second factor authenti-
cators. However, users still need to input these second
factors into the same endpoint device where the pass-
word is entered. This mechanism consolidates the
whole authentication process into one attack vector,
aka the endpoint device, where they can be exposed
to a host of attacks. One such critical endpoint attack
vector is the keyboard device. Since users almost ex-
clusively use it as an input channel, it is of uttermost
importance that it preserves the confidentiality and in-
tegrity of users’ data (Jacob, 1996).



1.1 Problem Statement

Unfortunately, keyboards suffer from a big sniffing
problem. This is due to their hardware interface,
which is open for direct reading by privileged soft-
ware as well as DMA capable devices. This is true for
both PS/2 and USB keyboards (Ortolani and Crispo,
2012).
• for PS/2 keyboard, the data output buffer which

resides on the chipset keyboard controller and
is used to transfer scan codes upon a key
press/release, is exposed to the platform host
(Zhang et al., 2015b).

• For USB keyboards, the data transaction buffers
which are memory mapped are also exposed to the
host(Ladakis et al., 2013).

One critical malware category that takes advantage of
this insecure keyboard interface is keyboard sniffers,
more commonly referred to as keyloggers. Once they
infect a platform, keyloggers log keyboard activity,
and leak data to remote third parties. As documented
in numerous disclosed attacks, keyloggers pose a se-
rious threat against personal and financial data, de-
spite continuous efforts to guard against them. For
instance, keyloggers have been used to steal 10775
unique bank account credentials for customers who
have shopping at Barnes and Noble stores over a pe-
riod of 7 months (Schmidt, 2012) . Even governmen-
tal agencies have relied for years on hard disk based
keylogges, as documents by recent leaks (Thomson,
2013) .While keyloggers can be implemented on ei-
ther hardware or software, we focus in this paper on
the latter, as it is much more widespread and assumes
a stronger attacker. Software keyloggers can be clas-
sified under three categories: (Ortolani and Crispo,
2012):
• User-level Keyloggers: They often hook into

application-level API, but can also reliably de-
tected, through more privileged system level
hook-based techniques.

• Kernel-level Keyloggers: they hook into kernel-
level API, and by doing so, inadvertently mod-
ify the kernel’s code base, and thus its signa-
ture. Therefore, they can often be detected based
on integrity verification and code attestation tech-
niques.

• Firmware Level Keylogger: They can exploit
firmware level vulnerabilities within the BIOS or
any IO device, especially ones which are open
to general computations such as modern GPUs.
Therefore, they live outside of the CPU execution
environment, and can evade its detection mecha-
nisms. They can rely on the IO device DMA ca-

pabilities to directly read and sniff the keyboard’s
data registers.

In this paper we focus on firmware level keyloggers,
and formulate our research questions as follows:

How can we reliably detect the presence of
stealthy GPU keyloggers on endpoint devices? This
research question is important the following reasons:
• The increased complexity of devices functional-

ity, which is correlated with an increased com-
plexity of its corresponding firmware, has made
the firmware attack vector significantly larger.

• Many firmware malware categories, such keylog-
gers, do not need to hook into any kernel API
or structures. Therefore, system level detection
mechanisms such as code integrity and control
flow integrity are inefficient against it.

• CPU-based monitoring solutions, e.g. antivirus
systems, cannot monitor code residing on other
execution environments within other devices.

• The increasing ease of deploying firmware Mal-
ware. This is especially true for devices such
as GPUs, which have become open to general-
purpose computations. In fact, GPUs have been
traditionally used to process graphics rendering
code, relieving the CPU this way from these
heavy computations. However, the popularity of
the gaming and AI industries, and their increas-
ing demand for more GPU computational power
and functionality, has made GPU general pur-
pose computing much more extensive. Attacker
are naturally interested in exploiting this large at-
tack vector. Furthermore, 99 percent of world-
wide GPUs support GPGPU computations, which
greatly increases the infection ratio of GPU mal-
ware. This is different from previous firmware
attacks, which had to be more targeted, and thus
limited to smaller infection ratios (Ladakis et al.,
2013).

*For the remainder of this paper, we will use GPUs as
an example for devices’ firmware level software.

The solution proposed in this paper is inspired by
deception-based techniques, which are traditionally
used within the server side in order to harden the de-
tection of password database files breaches. An ex-
ample of such solutions are honeywords, where each
user is associated with one legitimate password, and n
fake ones. This directly increases the effort required
by attackers to brute force passwords. Furthermore,
in case a fake one is used, it automatically triggers
an alarm signalling a potential breach (Wang et al.,
2018).

Similarly, this paper’s main intuition is that we
need to deploy a transparent mechanism which can



inject intentionally crafted noise, which mimics au-
thentication credentials, to the keyboard’s buffer, and
allow any potential GPU keyloggers to monitor and
sniff it. SMMDecoy would subsequently send a list
of injected decoy credentials to a remote third party.
We propose to deploy such a solution within System
management mode, SMM, in order to take advantage
of its integrity and transparency guarantees. We also
propose to use Intel Software Guard Extension remote
attestation capabilities to send decoy credentials over
the internet. We call our solution, SMMDecoy. The
rest of the paper is organized as follows: section 2
presents the necessary background. We then intro-
duce the threat model, the solution design, and its
message flow. An overview of previous related work
is presented next. The paper closes with a set of con-
clusions as well as an overview of open questions and
suggested future work.

2 BACKGROUND

2.1 Keyboards Hardware Interface

Keyboards are such a prolific part of everybody’s
computing experience. They are also a critical secu-
rity component, since they are used as the main input
channel on many types of endpoint devices and are
relied upon to communicate security sensitive infor-
mation to the system software and eventually to our
trusted online service providers. Examples of such
information are authentication credentials. There are
several ways of connecting a keyboard to an x86 In-
tel platform: they can be either wireless or wire-base.
For the latter, we can further classify the connections
as either PS/2 or USB based. While the latter rely
on a serialized protocol, their interface to the host is
different:

• The PS/2 Keyboard interface is composed of key-
board processor which resides inside the keyboard
itself, and a keyboard controller which is part of
the host chipset. The interface of the keyboard
controller has 2 pairs of output buffers in the di-
rection of the CPU, and 1 pair in the direction of
the keyboard. The output buffer is used to transfer
the scan code if a key is pressed. It is readable by
any software and causes keyboard sniffing prob-
lem (Brouwer, 2009).

• USB based keyboard don’t have a chipset-resident
keyboard controller. They have instead a host con-
troller and a root hub. The host controller is rep-
resented by a set of buffers and structures, which
are mapped to main memory, and are accessible

through a set of system registers, also creating a
snigging vulnerability (Brouwer, 2009).

2.2 Scan Codes

“A Scan Code is a data packet that represents the state
of a key. If a key is pressed, released, or held down,
a scan code is sent to the computers onboard key-
board controller. There are two types of scan codes:
Make Codes and Break Codes”, which are used for
the events of key press or release. For every keyboard
key, there exists a unique make code and break code.
When a user presses a key on the keyboard, a scan
key is sent to the keyboard chipset-resident controller,
which then buffers it on the output data buffer. It then
raises the Interrupt request line, which will cause the
IRQ 1 to be fired if it is not masked. When the inter-
rupt is scheduled, the corresponding keyboard handler
reads the output buffer and converts the scan codes
into their corresponding key value. It is important to
note that the scan codes within the output buffer can
be read by software, even outside the interrupt han-
dler procedure, and this is the crux of the keyboard
sniffing challenge (Mike, 2009) (Brouwer, 2009) .

2.3 System Management Mode

System Management Mode, SMM, is a highly priv-
ileged x86 CPU mode. SMM code is part of the
BIOS code that resides on the SPI flash memory.
During the system boot up and before the operat-
ing system is loaded, the BIOS loads SMM into a
hardware protected memory area referred to as SM-
RAM, and which is not addressable from any other
CPU mode, including kernel and VMX modes (Zhang
et al., 2015a). SMM implements a number of SMI
handlers, which traditionally handle system control
functions, such as power management. In order to ex-
ecute SMI handlers, an SMM pin should be asserted,
which will then trigger an SMM interrupt. Before the
system switches to SMM mode, the CPU state is se-
curely saved into SMRAM, so that it can return to it
upon exiting SMM. This makes SMM highly trans-
parent to all privileged system level software. This
feature has been recently motivating many novel ways
of using SMM for non-traditional purposes, e.g. de-
bugging and system introspection (Delgado and Kar-
avanic, 2018).

2.4 Software Guard Extensions

Intel’s SGX are security extensions which are come as
part newer Intel X86 CPUs. Its main aim is to instan-
tiate an isolated trusted execution environment within



the user space, called an enclave. Enclave code and
data reside in specialized protected memory called en-
clave page cache (EPC), which encrypted, and hard-
ware protected. No privileged mode code can access
the enclave, including the OS and hypervisor. SGX
enclaves also rely on the intel management engine
EPID group identity to establish a remote attestation
protocol with Intel attestation servers, and through
it to third party service providers (Van Bulck et al.,
2017).

3 SOLUTION OVERVIEW

3.1 Threat Model

SMMDecoy assumes an active attacker who has un-
limited computing resources and can exploit zero-day
vulnerabilities of the host OS and user level applica-
tions. It also assumes that the GPU is compromised,
and so are all other I/O devices, with the exception
of the keyboard. Therefore, the only trusted compo-
nents of the system, are the BIOS and the keyboard.
SMMDecoy requires BIOS to be trusted only upon
boot up, and not during runtime. We also assume that
the attacker does not have physical access to the ma-
chine. We do not consider Denial-of-Service (DoS).
The BIOS is trusted because newer X86 platforms
are equipped with a Static Root of Trust of Measure-
ment, SRTM, with a corresponding secure implemen-
tation of a Core Root of Trust of Measurement, which
can ensure the code integrity of the BIOS upon boot.
Some solutions such as HP SureStart also ensure that
BIOS recovery as well, in case a code integrity com-
promise is detected.

3.2 High Level Architecture

The intuition behind SMMDecoy is to inject specially
crafted noise which mimics genuine authentication
credentials into the keyboard output buffers. We as-
sume that potential firmware keyloggers will be mon-
itoring the buffers. We will then communicate these
decoy credentials to relevant remote third parties. If
we detect any authentication attempt using any of the
reported decoy credentials, an alarm should be raised.
Such a detection mechanism would subsequently pro-
vide a wealth of information about how the malware
attack space, and the platforms from which it spreads.
Thus, the requirements of such a solution are as fol-
lows:
1. SMMDecoy should be implemented within a sys-

tem component that would allow it to be transpar-
ent to both the OS kernel and to the GPU malware.

2. The decoy authentication generation algorithm
should mimic real world passwords as much as
possible.

3. SMMDecoy should provide a mechanism for
communicating with third party remote servers
securely.

Figure 1: SMMDecoy Architecture: Trusted Components
in Green.

As figure 1 illustrates, SMMDecoy is made up of
two parts:

• SMMDecoy SMI handler :it is the trusted part,
and is used to generate decoy credentials, inject
them into the buffer interface, and then report
them to a remote server.

• SMMDecoy SGX enclave; It used to establish an
end-to-end secure channel between SMM and a
remote server, which will be responsible for rais-
ing alarms when a decoy credential is used by at-
tackers.

3.3 SMMDecoy Message Flow

At a conceptual level, SMMDecoy adopts the same
architecture for both PS/2 and USB keyboards. How-
ever, their interfaces are different and so are their
implementation details. We present SMMDecoy for
each keyboard separately.

Step 0: This is a common step for both implemen-
tations, and it takes place before the deployment of the
solution. We need to customize the BIOS firmware,
and add to it the SMMDecoy SMI interrupt. If this so-
lution is deployed within an enterprise environment,
this can be done as part of the platform provisioning
by the IT department. Upon system boot up, SM-
MDecoy SMI will be loaded securely into SMRAM.
From this point on, SMMDecoy message flow will di-
verge depending on the keyboard connection, PS/2 or
USB, which can be detected upon boot up.



3.3.1 PS/2 Message Flow

• In step 1, SMMDecoy SMI generates fake user
authentication credentials, which mimic legiti-
mate credentials (more details in section 4.5), and
converts them into scan codes.

• In step 2, SMMDecoy SMI is triggered based on
A timer. The system then enters SMM modes,
saves the CPU system state, as well the keyboard
buffer content into SMRAM. o SMIDecoy then
sends a 0xD2 command into the keyboard control
register, whose address is 0X64. This command
allows anything that is subsequently written into
the output buffer to appear as if it was generated
by the keyboard.

• step 3, SMMDecoy decoy injects the scan code
corresponding to the generated Decoy credentials
into the keyboard data output buffer, by writing
into address 0x60.

• In step 4, and after enough time elapsed to al-
low any potential firmware keylogger to sniff the
keyboard output buffer, SMMDecoy SMI restores
the state of the keyboard buffer, and exits SMM
mode. This restores the CPU state, and gives back
control to the OS so that it can resume its normal
execution.

• In Step 5, SMMDecoy periodically communicates
the list of decoy credential used to a remote server.
We differ the details of this step to section 3.7.

Figure 2: PS/2 SMMDecoy Message Flow.

3.4 USB Keyboard

• In step 1, SMMDecoy searches the system mem-
ory in order to find the memory address for the
system keyboard buffer. In Linux, an attached
USB device is represented by a USB Request
Block (URB) structure, defined in the linux/usb.h
header file of the Linux source tree. The keyboard
buffer is part of this URB structure. The SMI then
saves the physical address so as it can properly
access it (Ladakis et al., 2013).

• In step 2, SMMDecoy SMI generates decoy
credentials, which mimic legitimate credentials
(more details in section 3.6), and converts them
into scan codes. SMMDecoy SMI injects the scan
codes corresponding to the generated Decoy cre-
dentials into kernel keyboard bugger, which it ad-
dresses using its physical address.

• In step 3, and after enough time elapsed to al-
low any potential firmware keylogger to sniff the
keyboard output buffer, SMMDecoy SMI restores
the state of the keyboard buffer, and exits SMM
mode. This restores the CPU state, and gives back
control to the OS so that it can resume its normal
execution.

• In Step 4, SMMDecoy periodically communicates
the list of decoy credential used to a remote server.
We differ the details of this step to section 3.7.

3.5 Writing into the Buffer

For both the PS/2 and USB keyboards, we mentioned
that the SMMDecoy SMI injects decoy credentials
into either the output buffer of the system buffer.
However, this is an abstraction, since the buffer size
is limited and would require multiple coordinated
writes. For instance, the Linux keyboard buffer has
16 bytes, and each scan code is 3 bytes long. There-
fore, SMIDecoy is expected to perform multiple con-
secutive writes into the buffer (Mike, 2009).

3.6 Generating Fake Credentials

The injected decoy credentials need to be statistically
indistinguishable from genuine credentials. This can
be achieved by encoding password generation poli-
cies into the SMMDecoy SMI handler, such as using a
combination of characters and numbers, and having a
minimum password length. Furthermore, we can dy-
namically update this algorithm with contextual user
specific data, that the SMMDecoy handler would col-
lect from the system. Such as other passwords used
by the user, his name/ID. . . etc

3.7 Establishing a Secure Channel
between SGX Enclave and SMM

Deception techniques are useful only if we are able
to detect the decoy credentials being used or leaked
by potential malware at some point in time. For SM-
MDecoy, this can happen at two points:

• Local detection: SMM can choose well-crafted
patterns for the decoy credentials it injects. There-
fore, it could also intercept all outgoing networks



packets and look for the same pattern. Such solu-
tions have been previously explored in the litera-
ture and are not the focus on this paper (Ortolani
et al., 2010)

• Remote detection: SMMDecoy can send the in-
jected decoy credentials to a remote server, which
might be the service provider whose credentials
we have been injecting into the keyboard buffer.
While the actions the remote server takes upon
detection of a used decoy credential are outside
of the scope of the paper, we discuss a number
of options here for the same of completeness. In
fact, decoy credentials can be used to augment an
already existing honeyword implementation. In
this case, SMMDecoy will increase the probabil-
ity of the attacker choosing a decoy honeyword to
authenticate to the server provider. Furthermore,
unlike a traditional honeyword which would only
signal the existence of a breach, SMMDecoy re-
veals a wealth of information about the malware
attack vector and the platforms from which it is
spreads. Decoy credentials could also be used as a
standalone honeyword where decoy accounts are
provisioned in order to allow the attacker to log
into them, and leave traces of their attack details,
such as the amount of money they transfer.

We have considered two approaches to achieving the
remote detection:
• Porting trusted network drivers into SMM.
• Relying on Intel SGX remote attestation.

While SMMDecoy proposes to use intel SGX, we dis-
cuss both approaches subsequently for completeness.

3.7.1 SMM Trusted Network Drivers

If SMMDecoy wants to send data over the network,
it needs to make use of the network drivers which
are part of OS. However, the latter is assumed to be
malicious within our threat model. This question has
been a common challenge for many SMM based so-
lution. One way it has been solved is by porting
commodity drivers into SMRAM. This has been pos-
sible because SMM mode is similar to kernel mode
where privileged CPU instructions are available. Au-
rora authors also argue that the mechanism of inter-
rupt rerouting helps SMM driver design concentrate
on the interrupt handling rather than device initializa-
tion or resource management, making it thus faster
(Liang et al., 2018).

3.7.2 Intel SGX Remote Attestation

In this approach, we propose to keep the SMMDecoy
SMI simple, and rely on the remote attestation capa-

bilities of Intel SGX to communicate with a remote
server. This approach also respects the threat model,
since Intel SGX enclaves are hardware protected from
the operating system.

Provisioning. Key provisioning happens once, and
it involves the following steps:

1. Authenticating SMMDecoy to Intel Remote
Server.

• During start-up, the BIOS uses the Intel remote
server PKI to establish a secure channel with it.

• The BIOS computes a token on the SMMDe-
coy to be loaded into SMRAM and sends its
hash signature to verify its integrity and prove
its identity.

2. Authenticating SGX enclave to Intel Remote
Server, using intel SGX remote attestation

3. The enclave generates a symmetric secret key K
which it securely forwards to the IAS, which se-
curely forwards the key to the SMMDecoy SMI
on the same platform as the SMMEnclave.

At this point, a unique session has been successfully
established.

Communication. Once a shared secret key is estab-
lished between SMMDecoy enclave and SMI, the in-
terrupt is ready to secretly send decoy credentials to
the enclave. The enclave then engages in a standard
remote attestation protocol and establishes a secure
channel with the remote server.

3.7.3 Proposed Implementation Details

We propose to use Coreboot as a BIOS distribution to
implement SMMDecoy on. Coreboot is “an extended
firmware platform that delivers a lightning fast and
secure boot experience on modern computers and em-
bedded systems. As an Open Source project, it pro-
vides auditability and maximum control over technol-
ogy”(Zhang, 2013). This is important for us to be able
to implement and deploy the custom SMMDecoy In-
terrupt handler into the platform.

4 RELATED WORK

In this section we discuss three lines of related work:
GPU malware detection, SMM based systems and se-
curity by deception.

In order to detect stealthy GPU malware, prior
work suggested monitoring the side effects the mal-
ware generates, as CPU solutions are unable to access



and scan the GPU. However, these measurements are
only reliable in the case of malware which performs
bulk DMA transfers, which is not the case for GPU
keyloggers. Other work suggests using the cuda-gdb
real time debugging capabilities in order to monitor
the GPU’s access patterns. However, GPU malware
could remote debug points from its code base (Em-
bleton et al., 2008).

SMM has been traditionally used to secure the ex-
ecution of platform management functions such as
power and hear control. However, it has been in-
creasingly used to deploy security sensitive solutions,
which require strong hardware access control guar-
antees. Such systems are HyperCheck that is used
for hypervisor integrity verification and IOCheck and
SMMDumper that scans system memory and dumps
it for forensic analysis (Reina et al., 2012) (Zhang,
2013). Aurora leverages SMM to provide intel SGX
enclaves enclaves with trusted network and time ser-
vices, by porting their corresponding drivers into
SMM (Liang et al., 2018). Researchers have also
been long aware of the keyboard sniffing problem.
TrustLogin proposes a solution to prevent credentials
leakage while they are from the keyboard to the Net-
work Interface Card, NICl. It uses SMM to encrypt
the credentials, and forward them securely to the NIC.
(Zhang et al., 2015b).

Finally, Deception and decoy has always been
part of the defence arsenal of cybersecurity. The
most widely discussed deception-based solution is ar-
guably honeypots. The intuition behind honeypots
is to ”provide fake information which is attractive to
attackers. The attacker, in searching for the honey
of interest comes across the honeypot, and starts to
taste of its wares. If they are appealing enough, the
attacker spends considerable time and effort getting
at the honey provided. If the attacker has finite re-
sources, the time spent going after the honeypot is
time not spent going after other things the honeypot
is intended to protect. If the attacker uses tools and
techniques in attacking the honeypot, some aspects
of those tools and techniques are revealed to the de-
fender in the attack on the honeypot” (Cohen, 2004).
The earliest and most notable use of honeypots was
in 1991 from ATT researcher in a paper called “jail”,
which aims to lure attacks in order to monitor their be-
haviour. Since that time, deception has increasingly
been explored as a key technology area for innova-
tion in information protection (Wang et al., 2018).The
idea of honeypots has been further explored more re-
cently, and applied to detect authentication into finan-
cial institutions, by creating an account which mimics
a real account through all its attributes, minus the fact
that it isn’t backed with any money which can actu-

ally be stolen. When an attacker gains access to such
accounts, it will be indistinguishable to them from
any other real account, as they will have access to
the same services, except the fact that the bank will
not be validating any money transfers linked to the
faked account. This constitutes a very efficient solu-
tion not only for the detection of account breaches, but
also a great opportunity to learn about the behaviour,
strategy and intention of attackers (Juels and Rivest,
2013).

4.1 Conclusions and Future Work

In this paper, we presented SMMDecoy, a deception-
based technique to detect GPU keyloggers, which
sniff the open keyboard interface. We protect against
a strong adversary which can take control over the
platform’s user applications, kernel, and GPU. SM-
MDecoy generates and injects decoy credentials,
which should indistinguishable from legitimate ones.
They are then sniffed by the GPU malware. SMMDe-
coy relies on strong hardware enabled access control
mechanisms. It uses SMM to protect the integrity
and transparency of the decoy credentials’ injection.
It also uses SGX to establish a secure channel to a re-
mote server, over which the injected decoy credentials
would be forwarded. If a decoy credential is detected
to be used by a malware, an alarm should be raised.
Unlike traditional honeywords, an SMMDecoy alarm
reveals a wealth of information about how the mal-
ware spreads. The paper also discusses the implemen-
tation feasibility of SMMDecoy. Future work is to
naturally implement the solution and evaluate its per-
formance. We also plan to use SMMDecoy as part of
a longitude study in which we aim at detecting GPU,
and other firmware, malware which is not possible to
detect using traditional CPU based mechanisms.

ACKNOWLEDGEMENTS

The author would like to thank all of the reviewers.
This work is supported by the department of infor-
matics of the university of Oslo, and COINS Research
School of Computer and Information Security.

REFERENCES

Brouwer, A. (2009). The at keyboard controller.
Cohen, F. (2004). The use of deception techniques : Hon-

eypots and decoys.



Delgado, B. and Karavanic, K. L. (2018). EPA-RIMM: A
framework for dynamic smm-based runtime integrity
measurement. CoRR, abs/1805.03755.

Embleton, S., Sparks, S., and Zou, C. (2008). Smm rootk-
its: A new breed of os independent malware. In Pro-
ceedings of the 4th International Conference on Se-
curity and Privacy in Communication Netowrks, Se-
cureComm ’08, pages 11:1–11:12, New York, NY,
USA. ACM.

Florencio, D. and Herley, C. (2007). A large-scale study
of web password habits. In Proceedings of the 16th
International Conference on World Wide Web, WWW
’07, pages 657–666, New York, NY, USA. ACM.

Herley, C. (2009). So long, and no thanks for the externali-
ties: The rational rejection of security advice by users.
In Proceedings of the 2009 Workshop on New Secu-
rity Paradigms Workshop, NSPW ’09, pages 133–144,
New York, NY, USA. ACM.

Holz, T., Engelberth, M., and Freiling, F. (2009). Learning
more about the underground economy: A case-study
of keyloggers and dropzones. In Proceedings of the
14th European Conference on Research in Computer
Security, ESORICS’09, pages 1–18, Berlin, Heidel-
berg. Springer-Verlag.

Jacob, R. J. K. (1996). Human-computer interaction: Input
devices. ACM Comput. Surv., 28(1):177–179.

Juels, A. and Rivest, R. L. (2013). Honeywords: Making
password-cracking detectable. In Proceedings of the
2013 ACM SIGSAC Conference on Computer ; Com-
munications Security, CCS ’13, pages 145–160, New
York, NY, USA. ACM.

Ladakis, E., Koromilas, L., Vasiliadis, G., Polychronakis,
M., and Ioannidis, S. (2013). You can type , but you
can ’ t hide : A stealthy gpu-based keylogger.

Liang, H., Li, M., Zhang, Q., Yu, Y., Jiang, L., and Chen,
Y. (2018). Aurora: Providing trusted system ser-
vices for enclaves on an untrusted system. CoRR,
abs/1802.03530.

Mike (2009). Operating systems development - keyboard.
Ortolani, S. and Crispo, B. (2012). Noisykey: Tolerating

keyloggers via keystrokes hiding. In Proceedings of
the 7th USENIX Conference on Hot Topics in Security,
HotSec’12, pages 2–2, Berkeley, CA, USA. USENIX
Association.

Ortolani, S., Giuffrida, C., and Crispo, B. (2010). Bait your
hook: A novel detection technique for keyloggers. In
Jha, S., Sommer, R., and Kreibich, C., editors, Re-
cent Advances in Intrusion Detection, pages 198–217,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Reina, A., Fattori, A., Pagani, F., Cavallaro, L., and Br-
uschi, D. (2012). When hardware meets software: A
bulletproof solution to forensic memory acquisition.
In Proceedings of the 28th Annual Computer Security
Applications Conference, ACSAC ’12, pages 79–88,
New York, NY, USA. ACM.

Schmidt, M. S. (2012). Credit card data breach at barnes
noble stores.

Thomas, K., Li, F., Zand, A., Barrett, J., Ranieri, J., In-
vernizzi, L., Markov, Y., Comanescu, O., Eranti, V.,
Moscicki, A., Margolis, D., Paxson, V., and Bursztein,

E., editors (2017). Data breaches, phishing, or mal-
ware? Understanding the risks of stolen credentials.

Thomson, I. (2013). How the nsa hacks pcs, phones,
routers, hard disks ’at speed of light’: Spy tech cat-
alog leaks.

Van Bulck, J., Piessens, F., and Strackx, R. (2017). Sgx-
step: A practical attack framework for precise enclave
execution control. In Proceedings of the 2Nd Work-
shop on System Software for Trusted Execution, Sys-
TEX’17, pages 4:1–4:6, New York, NY, USA. ACM.

Wang, D., Cheng, H., Wang, P., Yan, J., and Huang,
X. (2018). A security analysis of honeywords. In
25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018.

Zhang, F. (2013). Iocheck: A framework to enhance the
security of i/o devices at runtime. In 2013 43rd An-
nual IEEE/IFIP Conference on Dependable Systems
and Networks Workshop (DSN-W), volume 00, pages
1–4.

Zhang, F., Leach, K., Stavrou, A., Wang, H., and Sun, K.
(2015a). Using hardware features for increased de-
bugging transparency. In 2015 IEEE Symposium on
Security and Privacy (SP), volume 00, pages 55–69.

Zhang, F., Leach, K., Wang, H., and Stavrou, A. (2015b).
Trustlogin: Securing password-login on commodity
operating systems. In Proceedings of the 10th ACM
Symposium on Information, Computer and Communi-
cations Security, ASIA CCS ’15, pages 333–344, New
York, NY, USA. ACM.


